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• Increasing tradeoff info often resulted in revised and divergent portfolio choices 

• Managers suggested opportunities and challenges to using MOEAs for planning 

Abstract 

Multiobjective Evolutionary Algorithms (MOEAs) generate quantitative information about performance 

relationships between a system’s potentially conflicting objectives (termed tradeoffs). Research 

applications have suggested that evaluating tradeoffs can enhance long term water utility planning, but 

no studies have formally engaged with practitioners to assess their perceptions of tradeoffs generated 

by MOEAs. This article examines how practitioners interact with MOEA tradeoffs and reports their ideas 

for how their agencies could use MOEA results. We hosted a group of Colorado water managers at a 

charrette, or structured investigatory workshop, where they directly interacted with tradeoffs, discussed 

how they used the information, and linked their workshop experiences to opportunities for MOEAs to 

enhance their agencies’ planning processes.  Among other interesting results, we found that managers’ 

portfolio preferences diverged as tradeoff information increased and that structured information about 

the relationships between decision levers and performance would be beneficial for interpreting 

tradeoffs.  
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participatory modeling; workshop; multiobjective evolutionary algorithm (MOEA); decision-making; long 
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1 Introduction 

Decision making is a process; when a choice is available to be made, deliberation must occur if an agent 

desires an outcome and is able to take action (Aristotle, 1920). In most decision making processes, 

preferences are constructed based on problem framing, previous experience, and available information, 

time, and resources (Payne et al., 1992; Roy, 1999; Slovic, 1995; Tsoukias, 2008). In combination, these 

factors help decision makers develop what Montgomery (1983) terms a “dominance structure”. A 

dominance structure is a set of cognitive rules that serve to create advantages for certain alternatives or 

neutralize disadvantages of others.  Such a framework is necessary when there is no strictly-optimal 

option. The dominance structure is iteratively built up in stages using mechanisms that help decision 

makers assess relative merits of alternatives and/or alter their internal representations of situations 

until one alternative becomes dominant. This process of creating arguments for and against alternatives 

develops a justification, or basis for reasoning that can be conveyed to others. Justifiability is a 
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cornerstone of deliberate human decision making (Connolly and Reb, 2012; Payne et al., 1992; Slovic, 

1975; Tversky, 1972), and studying this in technology-based decision support is warranted.   

Multiobjective Evolutionary Algorithms (MOEAs) have been researched and applied as tools to aid 

decision making processes concerning complex systems for which there are multiple conflicting 

performance measures. MOEAs seek to optimize system performance in multiple performance 

objectives, efficiently searching through thousands of alternatives to develop a set that quantitatively 

characterizes the approximate best tradeoffs between those objectives. These quantified tradeoffs 

reveal how much performance in one objective must be forfeited to get better performance in another. 

In the context of developing a long term water resources plan, MOEAs test thousands of alternative 

portfolios of new sources, new infrastructure, and new operations in order to balance between 

performance objectives such as maximizing supply reliability and minimizing environmental impact. 

Several studies have applied MOEAs to long term water resources planning problems. Long term plans 

are essentially overarching decisions about pursuing a set of actions over an extended time horizon. 

Three recent academic examples are Matrosov et al.’s use of an MOEA to develop long term planning 

portfolios for London, balancing cost, energy use, resilience and environmental objectives (2015); Zeff et 

al (2016) optimization of long and short term risk triggers to develop adaptation strategies and support 

regional cooperation between utilities in North Carolina; and Wu et al.’s application of multiobjective 

optimization to identify portfolios of traditional and alternative water sources for Adelaide in 

consideration of cost, emissions, reliability, and the environmental impacts of water and wastewater 

reuse (2017). These studies demonstrate that MOEAs can produce informative tradeoffs for multiple 

aspects of planning in a variety of geographic contexts which could inform agencies’ planning decisions. 

However, none of these examples have undertaken a structured exploration of how a practitioner or 

agency employing an MOEA would interact with or perceive tradeoffs, and thus have not determined 

whether or how they actually aid decision making. 

To study whether the quantitative information found in MOEA tradeoffs contributes to the creation of 

defensible dominance structures that help water managers construct preferences and justify decisions, 

researchers need to be able to observe, interrogate, and analyze practitioners’ usage of tradeoffs. 

Accomplishing this necessitates an interface between practitioners and researchers designed specifically 

around the type of information that results from MOEA-assisted optimization. Here, we can draw on an 

approach called a “charrette” which is used in non-academic settings to achieve a high level of public 

awareness and input on the design or vision of a community project or plan (US EPA, 2014). Charrettes 



4 

 

are also used by researchers in the fields of construction management and safety. Research charrettes 

are structured workshops that bring together industry professionals and academics in a relatively short 

but intensely productive session in order to generate discussion and feedback about newly-created 

products or practices intended for industry use (Gibson and Whittington, 2010). Charrettes combine the 

advantages of surveys, interviews, and focus groups in an accelerated time frame, overcoming the 

difficulties of undertaking these methods individually (e.g. low response rates, time commitments from 

both researchers and practitioners, access to data, etc.). Results from applying these mixed methods to 

technical research topics have shown that charrettes can offer both short and long term benefits to 

participating industry professionals and improved validity and reliability of research outcomes (Abowitz 

and Toole, 2010; Green et al., 2010). 

This paper presents the content, methods, and results of a research charrette through which our 

transdisciplinary research team engaged with Front Range, Colorado, water managers over the use of 

MOEA tradeoff information for long term water utility planning. The workshop was designed to discover 

how practitioners used tradeoff information to make decisions, and whether and how the managers 

perceived the information to be useful in their agencies’ planning processes. The goals of the workshop 

were to expose practitioners to an emerging tool and use the collected data to hone future MOEA 

research agendas and target new applications. 

The charrette that we focus on in this paper is the culmination of a larger study that introduced and 

applied the Participatory Framework for Assessment and Improvement of Tools (ParFAIT) (Smith et al., 

2017). The following section briefly introduces MOEAs and presents work from the previous phases of 

our ParFAIT efforts that pertain to this final step in the framework. In Section 3, we describe the 

methods and content from our workshop. Next, we describe the results, and in Section 5 offer 

concluding remarks. 

2 Background 

2.1 MOEA-assisted optimization for long term water utility planning 

For water utilities, planning for long term, sustainable water security is a critical task and a major 

undertaking. Technical staff review alternative planning portfolios and iteratively discuss goals, needs, 

and strategies with Board- or council-level decision makers (CSU, 2017a; MWD, 2015), and, increasingly, 

the public as well (WUCA, 2015). They generally do not find a perfect plan due to the conflicts between 
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the financial, social, and environmental factors that utilities must navigate (Elkington, 2004), but utilities 

strive to make smart, responsible, and justifiable decisions that allow their systems to meet the 

communities’ chosen demand reliability policies in combination with community values.  

Multiobjective Evolutionary Algorithm (MOEA)-assisted optimization has been studied (Matrosov et al., 

2015; Mortazavi et al., 2012; Smith et al., 2018; Wu et al., 2016) and applied (Basdekas, 2014; CSU, 

2017a) as a method to help utilities develop long term plans. While a traditional planning process 

compares the performance of a handful of planning portfolios, MOEA-assisted optimization efficiently 

designs and tests thousands of potential portfolios. This extensive search and evaluation produces 

quantitative information about the system’s performance in multiple objectives and the tradeoff 

relationships between those objectives.  

Performing MOEA-assisted optimization requires a simulation model (already developed by most 

utilities), a problem formulation, an MOEA, and tradeoff visualizations. The problem formulation is a set 

of decision levers, objectives, and constraints that the MOEA uses to construct and compare planning 

portfolios. Decision levers are a utility’s options to modify its system, e.g. building a reservoir or enacting 

conservation; the set of chosen decision levers makes up a portfolio. Objectives are measures of system 

performance that are quantified representations of a system’s goals or purposes, e.g. minimizing 

frequency of lawn watering restrictions or maximizing water in storage. Constraints are numeric limits to 

acceptable performance, e.g. if a portfolio cannot meet 100% of indoor demand at all times it is not 

considered a valid planning approach. 

MOEA-assisted optimization is carried out through many cycles of a computational loop. The MOEA  

generates an initial population of portfolios and feeds each one to the simulation model, which tests the 

portfolio over one or more future scenarios. At the end of the simulation, values for objectives and 

constraints are reported back to the MOEA. This loop iterates thousands of times, during which the 

MOEA intelligently evolves new “generations” of portfolios through both systematic and random 

recombination and mutation of the high-performing portfolios of previous generations. This results in a 

set of nondominated portfolios in which performance improvement in one objective is only achieved by 

sacrificing performance in another; thus, the portfolios “trade off” levels of performance. Analyzing the 

tradeoffs requires careful analysis including visualization techniques, and these are the final component 

of MOEA-assisted optimization. More information about tradeoff visualization is presented in Section 

3.1. 
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Water utility planning is a complex process which may benefit from new technologies. Increased public 

scrutiny, greater mandates to protect social and environmental interests, and heightened awareness of 

future uncertainty all suggest that extensive portfolio search and explicit performance tradeoff 

information would be useful to the agencies. 

2.2 Participatory Framework for Assessment and Improvement of Tools (ParFAIT) 

Many research applications of MOEA-assisted optimization have established the ability of MOEAs to 

generate tradeoff information about water supply systems and produce innovative portfolios that can 

outperform plans developed with human expertise or previously-established operational approaches 

(Maier et al., 2014; Nicklow et al., 2010). While Colorado Springs Utilities and Melbourne Water are two 

notable examples (CSU, 2017b; Kularathna et al., 2015), instances of this  promising tool being applied in 

real-world planning studies are rare. To understand and potentially overcome the limited uptake of 

MOEA-assisted optimization, researchers must consider the factors that lead industries to adopt tools 

and consciously seek to create usable science. That is, researchers must undertake intentional, iterative 

interaction with practitioners to understand their needs, transmit research, and co-produce relevant 

future research directions (Díez and McIntosh, 2009; Dilling and Lemos, 2011; Sarewitz and Pielke, 2007; 

Smits, 2002). 

The Participatory Framework for Assessment and Improvement of Tools (ParFAIT) is a research process 

designed to bring academics and practitioners together in a structured way (Smith et al., 2017). ParFAIT 

is a four-phase research sequence that can be summarized as follows:  

Step 1: Choose a promising research tool and a practical use for it that is supported by academic 

literature and knowledge of the proposed industry; 

Step 2: Hold Workshop 1 to solicit input from practitioners that will inform development of a tool 

testbed. (A testbed is a platform on which the tool can be demonstrated to practitioners.); 

Step 3: Build the tool testbed, iterating with practitioners as necessary to ensure relatability and 

relevance to real-world tool application context; 

Step 4: Hold Workshop 2, a research charrette, to solicit practitioner feedback on the testbed results 

(i.e. results representative of what they could expect if their agencies adopted the tool). 
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Smith et al. (2017) introduced ParFAIT, including the detailed steps and methodology, the supporting 

theory behind the process, and the results of Workshop 1 (briefly summarized below). The ParFAIT 

purpose and process distinguish the study presented in this paper from previous MOEA research studies 

which either applied the tool to a stylized system without input from practitioners or worked with water 

managers to inform its application to a real system. This study instead seeks to create a context and 

platform through which practitioners from many agencies can gain experience using MOEA tradeoffs 

and provide their feedback to researchers. Here, we present results from our application of ParFAIT, 

including a charrette with utility managers to understand their engagement with tradeoffs and the 

overall usability of MOEAs for long-term decision making. 

2.2.1 ParFAIT Workshop 1 

Workshop 1 of our ParFAIT process took place in February, 2015. It brought together water managers 

from six Front Range, Colorado, utilities1 and our research team which was made up of engineering, 

social science, and climate science researchers as well as water utility practitioners. Through targeted 

but free-form group discussions, managers shared their experiences of Front Range management 

challenges and provided feedback and suggestions to inform the elements needed to create an MOEA-

assisted optimization testbed: supply and demand decision levers, performance objectives and 

constraints, future supply and demand scenarios, and important features for a generic but relevant 

hypothetical water supply simulation model.  

Creating a relatable testbed is crucial for the successful application of ParFAIT because it is the basis for 

generating representative results, and also because its components must be recognizable to participants 

in the second ParFAIT workshop. This enables them to quickly grasp the testbed and focus on engaging 

with the results. Based on the information we generated through Workshop 1 and iteration with 

practitioners on our research team, we developed the problem formulation (decision levers, objectives, 

and constraints) and water supply simulation model that make up the Eldorado Utility Planning Model 

testbed. 

2.2.2 ParFAIT testbed: The Eldorado Utility Planning Model and case study 

To demonstrate MOEA-assisted optimization, we used the context of a hypothetical water utility, called 

"Eldorado Utility," undertaking a long term planning process. The Eldorado Utility Planning Model and 

                                                           
1 City of Aurora, City of Boulder, Colorado Springs Utilities, Denver Water, City of Fort Collins, and Northern Water 
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case study generically capture management context relevant to utilities on the Front Range of Colorado 

as well as other regions in the western U.S. The rest of this section will briefly describe Eldorado Utility’s 

supply system and problem formulation, the model, and minimal pertinent Front Range context. 

Technical details about the optimization problem are included in the Appendix. For more Front Range 

context, refer to Smith et al. (2017), and for in depth discussion about the model and case study results, 

refer to Smith et al (2018).  

Much of the western U.S. is severely water-limited and tightly regulated by the prior appropriation legal 

doctrine, or “first in time, first in right” (Hobbs, 2004). One practical outcome of these factors is that, as 

cities grow, they obtain a variety of types of water rights (e.g. storage rights and streamflow diversion 

rights), each with different temporal priorities, and which may be sourced from multiple geographic 

locations. To represent this, Eldorado’s hypothetical system includes: two reservoirs on two different 

rivers with junior priority dates; three direct diversion streamflow rights on a nearby river – one senior, 

one mid-seniority, and one junior; one junior diversion right on a distant river that requires the diverted 

water to be conveyed under a mountain range in order to be stored closer to the utility; and 10,000 

shares of a water wholesale company that Eldorado takes directly from a reservoir owned and operated 

by the wholesaler.  

In many years, junior right holders do not all get their full allotments (Caulfield Jr. et al., 1987; P. O. 

Abbott, 1985); e.g., a reservoir does not necessarily fill or a streamflow right does not always get to 

divert. Streamflow and competition for water on different rivers varies, however, and this means that 

utilities’ water supplies strategically span entire regions. The Eldorado Utility Planning Model 

encompasses 5 basins and 12 water users besides Eldorado. The other users with senior water rights 

often limit the yields from most of Eldorado’s sources, but some also provide opportunities for the 

utility to acquire more reliable supplies.  

The Eldorado Utility is a relatively small water provider and, like much of the western U.S., is expecting 

rapid population growth (State of Colorado, 2017). The utility has a set of 13 decision levers it can use to 

modify its system to meet growing demands. The levers fall into three general categories: pursuing 

“new” water, building new storage, and altering management of reusable water. The first category 

includes decisions about leasing strategic space in other agencies’ reservoirs and obtaining the right to 

move reusable water around the region for more efficient access. Pursuing “new” water refers to 

decisions to acquire rights from regional agricultural or industrial users, or buying shares from water 
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wholesalers. Conservation is also considered new water because it frees up water that would have 

otherwise not been available to meet growing demands. Building new storage includes decisions about 

whether and how much to expand an existing reservoir and whether to build a new one either 

upstream, downstream, or both. 

Eldorado has defined five2 performance objectives on which to evaluate potential portfolios. They are 

qualitatively described here and also summarized in Table 1. The first objective, “Years in Restriction 1” 

seeks to minimize how frequently Eldorado goes into Level 1 restrictions, which occurs when the utility’s 

storage drops below 75% of average annual demand3. Eldorado’s reliability policy dictates that the 

utility should not enact these restrictions more than 5 times in 25 years. The next objective captures the 

utility’s desire to minimize missed opportunities, i.e. inability to use available water (“Missed Op 

Water”); this measures how much of certain types of water that Eldorado had access to but could not 

use due to incompatible demand timing, lack of storage, etc. Next, Eldorado seeks to minimize “New 

Supply”; this means minimizing the average annual volume of water over the course of the simulation 

that Eldorado acquires through decisions such as buying rights or shares or conserving water (i.e. freeing 

up water to meet new demands). While Eldorado does need more water for a growing population, this 

objective is minimized because drawing more water than necessary away from other users creates social 

and economic disruption in their communities. The “New Storage” objective minimizes the volume of 

newly-built storage within a portfolio because adding infrastructure is expensive, uncertain, and 

environmentally problematic. Finally, measuring “April 1 Storage-to-Demand” is another way for 

Eldorado to evaluate the reliability of their system; this objective seeks to maximize the lowest April 1st 

storage volume over the course of the simulation (i.e. it measures how much water is left in storage at 

the end of the winter drawdown season). 

The single constraint included in the problem formulation was that all portfolios had to meet 100% of 

indoor demand (demand remaining after outdoor water use is prohibited by Level 3 restrictions). 

                                                           
2 The full optimization problem had two additional restrictions-based objectives that were not presented in the 

workshop but which are described in the Appendix. 
3 When storage drops below 50% of annual demand, more severe restrictions are triggered but those were not 

presented in the workshop (see the previous footnote). 
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Table 1. Summary of performance objectives. 

Objective Description 

Years in 

Restriction 1 

Minimize frequency of Level 1 restrictions over 25 years 

Missed Op 
Minimize average annual volume of the sum of: return flows that Eldorado could 

have captured and reused, forfeited Wholesaler shares, and forfeited Ag2 shares 

New Supply 
Minimize average annual new water created by either conserving or acquiring right 

and shares 

New Storage Minimize the volume of newly-built storage in a portfolio 

April 1 Storage-

to-Demand 

Maximize the lowest April 1st storage-to-annual demand ratio during the 25-year 

simulation 

The Eldorado Utility and regional system are modeled using the RiverWare platform (Zagona et al., 

2001). The optimization was performed on a 25-year simulation horizon with a monthly timestep using 

the Borg MOEA (Hadka and Reed, 2013). Optimizations were performed in three different hydrologic 

scenarios: historic, streamflow resulting from a 1°C-perturbed future (qualitatively named “Very Warm” 

for workshop purposes), and streamflow resulting from a 4°C-perturbed future (referred to as “Very 

Hot” in the workshop). These temperatures were based on a previous climate change study in which all 

of our Front Range utilities participated; more information about the choice of these scenarios can be 

found in Woodbury et al (2012) and a description of their generation is in Smith et al (2018).  

3 Methods 

3.1 Interactive tradeoff visualization workbooks 

To explore and understand the quantitative tradeoffs contained within a set of nondominated portfolios 

produced by MOEA-assisted optimization, users need to be able to see the complex relationships 

between the portfolios. This is facilitated by visualizing multiple portfolios at a time in several objectives, 

or dimensions. Being able to see relationships across all dimensions simultaneously provides the 

greatest opportunity to see tradeoffs, since only seeing a subset of the objectives can obscure higher-

dimensional relationships (Kollat and Reed, 2007). Understanding and exploring a large dataset in many 

dimensions requires advanced visualization techniques called visual analytics (Keim et al., 2006; Liu et 

al., 2017; Thomas and Cook, 2006; Woodruff et al., 2013).  
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This study uses parallel axis plotting. The plots use a series of vertical axes to represent as many 

dimensions as desired (Fleming et al., 2005; Herman et al., 2014; Inselberg, 1985; Watson and Kasprzyk, 

2017). Studies have shown that if parallel plots are interactive, first-time users can learn to use them 

effectively with 5-10 minutes of training (Johansson and Forsell, 2016; Siirtola and Räihä, 2006). Previous 

research has assessed whether users can evaluate multiple dimensions to complete a closed-form task 

with the plots, e.g. “Which one of the cars manufactured in 1982 has the slowest acceleration?” (Siirtola 

and Räihä, 2006). Our workshop differs in that we asked participants to use the information from the 

plots to make their own choices, so our results will reflect how practitioners used parallel plots to weigh 

tradeoffs and make judgements. 

To enable the water managers to use parallel plots for subjective analyses, we created plots that 

supported extensive browsing, multiple selections, and comparisons between portfolios and across 

workshop activities. We used Tableau, a commercially-available business analytics program (Jones, 

2014), to create a series of interactive worksheets on which participants could: hover over portfolios to 

get full decision and performance information, select one or more portfolios to highlight them, and 

enter portfolio IDs that changed the colors of those portfolios to register their choices for the activities 

described below. Critically, the workbooks allowed us to save their choices which both recorded them 

for later research analysis as well as allowed us to show managers how their choices changed (or did not 

change) over the course of the workshop. 

Example results from optimizing the Eldorado Utility case study are presented in Figure 1. Briefly 

discussing the example results will facilitate readers’ understanding of the information that water 

managers used during the charrette (described in the next section). As demonstrated below, we showed 

charrette participants the objectives and decisions together to provide all information about the 

portfolios and enable them to evaluate tradeoffs between different objectives while simultaneously 

exploring decision preferences. 
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Figure 1. A screenshot of a Tableau worksheet that corresponds closely with what participants used in the charrette. Two 

portfolios are highlighted to demonstrate tradeoffs. 

The plots in Figure 1 show 20 portfolios4 that resulted from optimizing the Eldorado Utility case study 

using hydrology generated for a 4˚C-warmer (or “Very Hot”) future. The top plot has five vertical axes- 

one for each performance objective. Each of the lines connecting the axes is a portfolio. The vertical 

position at which a portfolio line crosses an objective axis denotes its performance, where lower 

intersection is better. (Note that the objectives and decision levers all have different numerical scales 

and we have normalized the values so that each dimension fully spans its axis.) The portfolios are 

colored based on how many years of Level 1 restrictions they produced (i.e. the performance on the 

rightmost axis); blue lines all have five years in restriction, red lines all have nine years. Two portfolios 

                                                           
4 The full tradeoff sets produced by the Eldorado Utility optimizations included approximately 1000 portfolios each 

(Smith et al., 2018). In order to make the most of limited workshop activity time, we only showed participants 20 

predetermined alternatives that were hand-selected by researchers such that the subset captured a wide range of 

performance for each objective and clearly presented the system’s performance tradeoffs.  
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are highlighted to demonstrate the tradeoffs presented in the plot. The blue portfolio has the best 

possible performance in April 1 Storage-to-Demand and Years in Restriction 1, has medium-poor 

performance in New Storage and Missed Op Water, and the worst possible performance in New Supply. 

These levels indicate the tradeoffs between reliability measures on the right two axes and other system 

performance considerations. Conversely, the red portfolio performs the worst in April 1 Storage-to-

Demand and Years in Restriction 1 but better, sometimes much better, than the blue portfolio in the 

other three objectives. Depending on Eldorado’s preferences and priorities, they might choose 

portfolios with different performance characteristics. 

The bottom plot shows decision lever attributes using a vertical axis for each of the 13 levers. As in the 

objectives plot, the lines connecting across axes are portfolios, and the position at which they intersect 

an axis denotes “how much” of a decision is included in the portfolio. The lower a portfolio line crosses, 

the “less” of that lever is present. Each portfolio line in the objectives plot has a corresponding line in 

the decision levers plot, so we can compare a few of the decisions led to the contrasting performance of 

the two highlighted alternatives described above.  

3.2 MOEA research charrette: June, 2016 

Step four of our application of ParFAIT, a research charrette, provided water managers with hands-on 

experience with MOEA-assisted optimization results. Our goals for the workshop were to:  

1. provide exposure for the emerging tool; 

2. observe managers’ analyses of tradeoff information; 

3. understand how managers relate the tradeoff information to their current needs and practices; 

4. get feedback about what potential uses and barriers managers see in the tool; 

5. learn about the general process of utilities adopting a new tool; and 

6. report any opportunities for future research to meet the needs of practice. 

Nine total participants from six Front Range utilities attended the workshop. The utilities represented a 

wide range of system sizes, and the individuals themselves also spanned a range of experience levels: 4 

managers had over 16 years of experience in Front Range water management; 1 had between 11 and 15 

years; 1 had between 6 and 10 years; and 3 had 0 to 5 years of experience. We also had participants 

with different roles within their respective agencies: four were at a management level and five were 

technical staff. This variety was helpful in getting different perspectives, and the presence of both 



14 

 

technical and managerial practitioners was especially encouraging since having advocates at multiple 

levels of administration increases the likelihood of innovation uptake (Daniell et al., 2014). 

3.2.1 Charrette development 

Intense preparation and attention to charrette form, function, and sequencing made it possible for both 

participants and our team to approach the actual experience as a fun day of learning. Once we produced 

tradeoffs for the Eldorado system in multiple future scenarios (completed approximately three months 

prior to the charrette), we began the process of developing content and activities that could effectively 

introduce new concepts and provide an engaging hands on experience. To accomplish this, we 

undertook trials of content with unaffiliated water professionals and water researchers to learn about 

how MOEA novices reacted to various levels of information and visualization complexity. These dry runs 

helped shape the presentation of MOEA and testbed information, choices of activities, timing to 

complete them, and design of the Tableau workbooks. 

The nine practitioner attendees were divided into three groups of three and seated at different tables. 

Each table had a facilitator, and the facilitators were chosen based on their familiarity with workshops 

and water management so that they could prompt and guide discussions in a neutral and 

knowledgeable way. Members of the core research team floated between groups to clarify technical or 

procedural questions. Each manager was given a laptop with the Tableau workbooks pre-loaded so that 

they could complete charrette activities independently. They then reflected on their individual efforts in 

small group discussions which are described in the Results section. 

Data from this workshop includes the portfolio choices that managers made as well as discussions about 

the MOEA testbed tradeoffs, managers’ analytical processes, utilities’ planning approaches, tool 

adoption, potential for MOEAs overall, and workshop content. As such, we made sure to capture 

participants’ portfolio choices but also took audio recordings and notes of each small group of 

managers. Having three types of information allowed us to ensure accuracy and produce results that 

synthesized both qualitative and quantitative responses. Additionally, post-workshop surveys recorded 

participants’ overall perceptions of the usefulness of MOEA-assisted optimization. 

The charrette used a detailed format, custom computer workbooks, and concrete tasks associated with 

the activities, all of which guided information flows between participants and researchers. Compared to 

our first ParFAIT workshop, which relied on free-form discussions about targeted topics to inform the 

direction of the overall project, this workshop was a relatively formal participation mechanism (Newig et 
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al., 2008; Smith et al., 2017). However, the facilitated small group discussion sessions built into each 

activity captured open discussion and impressions from participants and allowed us to access subtleties 

of how utilities plan and operate and how managers relate to their systems. After the workshop we 

electronically surveyed participants about their perceptions of MOEA usefulness. This mixture of 

methods is fundamental to the success of charrettes (Gibson and Whittington, 2010). The incorporation 

of focus group-type activities and discussions was particularly useful for bridging the gap between 

researchers and practitioners because these interactions “provide a clear view of how others think and 

talk” (Morgan, 1993). 

3.2.2 Training and support materials 

In order for participants to fully engage in the workshop and provide researchers with thoughtful, 

relevant feedback about using the tool, they needed to be able to  

1. understand why MOEA-assisted optimization has been proposed as a useful tool for water 

planning;  

2. understand the concept of performance tradeoff sets; 

3. have sufficient understanding and acceptance of the hypothetical utility, its supply and demand 

context, and its policies to be able to focus on tradeoffs; 

4. understand and relate to the problem formulation and planning scenarios; and 

5. effectively operate the Tableau workbooks and interact with parallel plots.  

We covered these topics in a 90-minute introductory presentation. After explaining and taking questions 

about MOEAs and the testbed (content similar to that found in the Background section of this article), 

we held an interactive parallel plot training session. 

In order to introduce parallel plots and tradeoff analysis, we created a simple multiobjective grocery 

shopping problem. Each participant used a Tableau worksheet set up identically to those that they 

would see in later activities that showed plots of performance and decision levers. We defined three 

conflicting objectives – minimize cost, maximize nutrition, and maximize pleasure – through which to 

optimize a set of eleven potential shopping items such as apples, ice cream, eggs, etc. As a group, we 

went through incremental closed-form exercises finding the least expensive shopping list, the most 

nutritious list, etc. The exercises required participants to analyze both the decision and objective plots 

and learn their interactive functions. The total training time was approximately 10 minutes. Questions 



16 

 

were encouraged throughout, and no participants expressed any prolonged difficulty in interpreting the 

worksheets. 

To support the managers in the day’s activities, we gave them printed packets that included a diagram 

of the Eldorado Utility Planning Model, current and future utility demands, utility policies, descriptions 

of the decision levers and objectives, and descriptions of the different hydrologic scenarios. The 

diagram, reproduced in Figure 2, conveys the spatial and temporal complexity of the system using icons, 

colors, dates, and arrows. 



17 

 

 



18 

 

Figure 2. Diagram of the Eldorado Utility Planning Model given to charrette participants in their supporting materials packets. 

Icons, colors, arrows, and dates all convey spatial and temporal relationships between water users. 

3.2.3 Tradeoff activities 

The core of the charrette was organized into four main activities to test behavior with the tool in four 

different situations of increasing complexity. During each activity managers were given 10-15 minutes to 

independently explore tradeoffs presented in Tableau workbooks and apply their own logic (or 

dominance structure) to choose two portfolios.  

The purpose of Activity 1 was to establish initial preferences and create a basis for managers to compare 

decision making with and without tradeoff information. The participants chose one of three portfolios 

developed heuristically by an expert “consultant” (researcher familiar with the model and case study). 

Each portfolio was characterized by its constituent decisions and its firm yield in historical hydrology, but 

no performance tradeoff information was offered. The chosen portfolios from this activity were brought 

back in Activity 4. 

The Activity 2 sequence was designed to ease the managers into evaluating tradeoffs in complex plots, 

to create space for analyzing tradeoffs without the dominant influence of reliability (Smith et al., 2017), 

to have managers be able to explicitly compare their use of different amounts of information, and to do 

all of this without considering the likelihood or implications of climate change on Front Range supplies. 

In Activity 2, Exercise 1, participants were shown performance of 20 algorithm-optimized portfolios in a 

two-objective tradeoff (along with a plot of all of the portfolios’ decisions) and asked to select two 

“portfolios of interest.” The portfolios resulted from optimizing for historical hydrology, and were 

constrained to meet Eldorado’s restrictions-based reliability policy. This was made clear to managers so 

they knew they did not have to worry about reliability in this first activity. In Activity 2, Exercise 2, 

managers were shown the same set of 20 portfolios as in Exercise 1, but now were given performance 

information in a four-objective tradeoff plot (along with the decisions plot). In Activity 2, Exercise 3, 

participants were shown the choices they made from Exercises 1 and 2 in one plot to compare the 

preferences they expressed with different amounts of tradeoff information.  

Activity 3 introduced the frequency of Level 1 restrictions objective and perturbed hydrology. The 

exercises allowed researchers to probe how the presence of the Level 1 restrictions objective influenced 

participants’ perceptions of other tradeoffs and added hydrologic challenges to their decision 

calculations. In Exercise 1, participants were shown 20 algorithm-optimized portfolios that resulted from 

optimizing in a 1°C warmer (Very Warm) future. To understand the implications of the different 
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hydrology, managers referred to the informational packets where plots showing a slightly lower 

magnitude of peak runoff, slightly earlier peak timing, and similar regional flow variability. They were 

again asked to choose two portfolios and had to directly trade off reliability policy performance with the 

other four objectives from Activity 2. Exercise 2 was identical to Exercise 1 except that the 20 portfolios 

were from a set produced by optimizing for a 4°C warmer (Very Hot) future. This scenario had a much 

lower peak runoff magnitude, much earlier peak timing, and lower variability due to lower magnitude 

high-flow years.  

Activity 4 was designed to emphasize to participants that portfolios developed for or optimized under 

specific futures may not be acceptable if the future is different than they planned for. Managers saw the 

exact same set of portfolios from Activity 3, Exercise 2, but now their performance in a set of varied 

hydrologic traces was shown (i.e., in a supply scenario that they were not optimized for). The set of 10 

traces were drawn from all other scenarios, so performance reflected the portfolios’ average 

performances in a wide set of futures. They were again asked to make two choices from this set, and 

while making the choices they could see how each portfolio performed in varied as well as 4°C 

hydrology (so they had two parallel plots of objectives and one plot of decision levers). Managers were 

also shown how their hand-crafted solution from Activity 1 performed in both scenarios and asked to 

reflect on how they felt about those portfolios, which were developed using historical hydrology.  
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Table 2. Summary of charrette activities. 

Exercise # Objectives Hydrology Description 

Activity 1 0 Historic Choose 1 of 3 handmade portfolios 

Activity 2, Exercise 1 2 Historic Choose 2 portfolios based on 2 objectives 

Activity 2, Exercise 2 4 Historic Choose 2 portfolios based on 4 objectives 

Activity 2, Exercise 3 4 Historic 
Compare choices from 2- and 4-tradeoff 

exercises 

Activity 3, Exercise 1 5 1°C 

Choose 2 portfolios while evaluating explicit 

tradeoffs between reliability and other 

objectives 

Activity 3, Exercise 2 5 4°C 

Choose 2 portfolios while evaluating explicit 

tradeoffs between reliability and other 

objectives 

Activity 4 5 Varied, 4°C 

Choose 2 portfolios with knowledge of how 

they perform in both varied and extreme (4°C) 

hydrology; reflect on choices from Activity 1. 

  

At the workshop, the managers played the roles of engineers at the hypothetical Eldorado Utility who 

were evaluating a new tool for its potential to enhance their upcoming long term planning process. 

Asking them to play a fictional role and use hypothetical (but realistic) tradeoff results helped 

participants to engage more candidly by distancing them from physical, social, and political pressures of 

their own systems. Similarly, for each activity, we asked the managers to choose two portfolios “to 

subject to further analysis” to avoid comparisons with the real-world, complex process that a utility 

undertakes to actually decide on one plan. It was important, however, to ask them to make individual 

choices; this forced them to really grapple with tradeoffs and to use some logical process, and thus 

created a more defined experience for them to discuss with researchers and each other. 

For each exercise (except for Activity 2, Exercise 3 during which participants just compared two sets of 

portfolio choices), the group facilitators asked three main questions to prompt discussion: 

A. What objective performances or tradeoffs made the two portfolios you chose interesting to 

you? 
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B. What decision lever attributes made the solutions interesting to you? 

C. Based on the objectives’ performance, as a manager at your utility, do you think you would have 

chosen the same solutions to investigate further? Why or why not? 

Questions A and B were designed to separate the ways that performance and decision levers impacted 

choices, and question C was designed to emphasize that we wanted the managers to choose freely but 

also provide as much real-world decision making context as they could. 

4 Results 

Throughout the day managers engaged with tradeoffs, facilitators, and each other. They took the 

purposes of the workshop seriously and combined openness to the activities with reflections about their 

own agencies’ planning contexts. As we prompted them with specific concepts, they each interpreted 

and applied them differently. A result of this was that, across nine managers, the portfolio selections 

often varied widely and sometimes the processes they used to make them also varied significantly. 

Rather than report each individual’s choices and processes, below is a description of common themes 

and examples of how logic changed over the course of the day. 

4.1 Managers’ use of tradeoffs 

Within this section about how managers used tradeoff information, there are four subsections. The first 

discusses findings from Activity 2, which presented managers with first two, then four objectives to 

analyze. Brief synopses of two managers’ decision processes and how they relate to dominance 

structuring are included. The second subsection of results is based on Activity 3, which introduced a fifth 

objective (Level 1 restrictions) and two new, more hydrologically challenging scenarios. Subsections 

three and four present findings that emerged throughout all four activities. 

4.1.1 Tradeoffs in two objectives vs. in four objectives 

In Activity 2, Exercise 1, where participants saw tradeoffs in two objectives, three general strategies 

emerged for choosing portfolios of interest. Five managers weighted performance in the objectives 

equally, two performed cost-benefit analyses between the two objectives, and two managers prioritized 

performance in one objective over the other. Figure 3 shows the results of Manager B4’s cost-benefit 

analysis. The manager started by picking the portfolio with the least storage, then worked incrementally 

up the New Storage axis to find out how much better the performance in Missed Opportunity could get. 

The manager ultimately tried to find the portfolios where the tradeoff was “reasonable”- where the 
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sacrifice in one objective came with a worthwhile gain in the other. This process is an example of the 

creation of a dominance structure; the manager initially screened alternatives based on the 

lexicographic decision rule (where there is a most important attribute) and then iteratively applied the 

addition of utilities rule to select portfolios (Montgomery, 1983). 

 

Figure 3. Screenshot of manager B4’s portfolio selections for Activity 2, Exercise 1. 

In Activity 2, Exercise 2, managers were asked to make two selections from the same set of portfolios 

that they saw in Exercise 1, but they did so with performance tradeoffs in four objectives instead of just 

two (so it was possible to choose the same portfolios in both exercises). Indeed, two managers chose 

the exact same portfolios as they did in Exercise 1, three managers chose one matching portfolio, and 

the other four participants chose two new solutions when presented with more tradeoff information. In 

Activity 2, Exercise 3, where managers were shown the two sets of choices they made, the managers 

who had identical sets of choices said that they used the same criteria in the second exercise as they did 
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first. This is a good reminder that new tools and new information do not necessarily result in changed 

preferences or different choices; MOEA tradeoffs may also reinforce existing cognitive heuristics or 

increase confidence in decisions depending on the nature of the tradeoffs and how managers use a 

priori judgements to create dominance structures. 

For the seven managers who chose at least one new portfolio in Exercise 2, they tended to balance their 

two choices against each other. For example, if they chose one portfolio that was “middle of the road” 

across the objectives, they allowed themselves to choose a second portfolio that prioritized one 

objective regardless of whether it performed poorly in another. Figure 4 shows Manager B2’s two 

selections. For the first choice (blue), the manager balanced across the objectives (i.e. he collapsed 

performance attributes using the addition of utilities rule); the second choice (maroon) resulted from 

screening lexicographically on New Storage performance and then deemphasizing Missed Op to support 

the dominance of the chosen portfolio. When discussing the process used to make choices with two 

tradeoffs versus four, this manager said, “More objectives is better in terms of understanding the 

system and its performance. I assume that at some point it gets too noisy, but I definitely see value in 

going from two to four. Even if I end up prioritizing one or two objectives, it helps to see the implications 

that has on the others.” 
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Figure 4. Screenshot of manager B2’s portfolio selections for Activity 2, Exercise 2. 

4.1.2 Use of the Level 1 Restrictions objective 

The tradeoff analyses from Activity 2 included only portfolios that complied with Eldorado’s restrictions-

based reliability criteria (defined as not exceeding 5 years in Level 1 restrictions over the 25-year 

simulation). This condition was explicitly conveyed to participants, and they were not presented with an 

objective that measured performance with respect to restrictions. By omitting an objective about 

restriction performance, the participants were able to consider their performance and decision 

preferences without directly grappling with level-of-service or policy consequences. Once frequency of 

restrictions was introduced as the fifth objective in Activity 3, all participants used it as their initial 

screening criterion. Additionally, both exercises in this activity used a climate change-perturbed 

hydrology: the portfolios in Exercise 1 resulted from a 1°C warmer scenario, and portfolios in Exercise 2 

resulted from a 4°C warmer scenario. 
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Though they had many options that resulted in only two years of restrictions, five of nine managers 

considered portfolios that exhibited from three to five years in Level 1 Restriction in Activity 3, Exercise 

1. However, only two managers ended up choosing portfolios with three or more years in restriction 

while none of the other seven managers found that the performance gains in other objectives 

warranted the extra years. Seven of nine participants expressed satisfaction with the performance and 

decision lever balances they were able to strike, and two expressed concerns that their decision 

preferences seemed less effective in the warmer scenario. 

While all managers chose to perform better than Eldorado’s reliability policy criteria in Activity 2 

Exercise 1, it was difficult to meet the criteria in Exercise 2 because the portfolios were evaluated in a 

hydrologically challenging 4°C warmer future; there were no portfolios that had fewer than five years in 

Level 1 restrictions (the maximum allowed by Eldorado’s policy). All portfolios that met the criteria 

required great sacrifices in at least two other objectives. For the three participants who stayed within 

the criteria, two focused on performance in one other objective and one tried to balance three other 

objectives within the compliant portfolios. Of the six other managers, four determined that one or two 

extra years in restrictions was worth the gains in other objectives, noting that this thinking would trigger 

policy discussions with their decision making boards- “this tool would be really useful in demonstrating 

just how much service we would have to give up in order to avoid unpopular storage or supply 

decisions.” Two managers felt that once the climate had warmed by 4°C, norms would have changed, 

lawns would have disappeared, and people wouldn’t expect the same levels of service that they had 

seen in the past, so they chose portfolios with nine years in restrictions and were able to avoid big 

storage projects. So, given difficult tradeoffs, three managers made painful concessions to comply with 

restrictions policy, four bargained on (relatively) small policy deviations thinking that the trade could 

become the focus of broader negotiations, and two managers reframed the problem in order to justify 

alternative(s) that they considered superior. 

4.1.3 More information, divergent choices 

In analyzing all managers’ specific portfolio choices over the course of the day, we found that as more 

information was added and tradeoff experience increased, the group’s choices started to diverge. Three 

participants made identical choices to one another in Activity 2, Exercise 1; the same was true in Activity 

2, Exercise 2. The sets of participants and the choices were different, though, and there were no 

correlations with experience level of the participants or size of utility. Overall, seven different portfolios 

were chosen in Exercise 1 and five different portfolios were chosen in Exercise 2 (out of 18 total choices 



26 

 

made per exercise: 2 choices for each of 9 participants). There were no sets of identical choices in 

Activities 3 and 4. In Activity 3, Exercises 1 and 2, 10 and 12 different portfolios were chosen, 

respectively, out of 18 total choices that were made for each exercise. Finally, 12 different portfolios 

were chosen in Activity 4 (when participants were prompted to select portfolios while evaluating their 

performance in two different futures simultaneously).  

Adding the Level 1 Restrictions objective and using more challenging hydrology resulted in more 

divergent choices than those with historical hydrology and only two or four objectives in play. The 

finding that more information can lead to a wider variety of choices is perhaps not surprising because 

there are more avenues for creating dominance structure. However, it is worth considering how 

increasing information and greater divergence would affect a real-world planning process that involves 

several levels of scrutiny by many employees, decision makers, and the public. While this workshop 

focused on how individuals perceived and worked with high dimensional tradeoffs, more formal 

preference elicitation and application via Multicriteria Decision Making (MCDM) could be helpful when 

employing an MOEA in formal planning settings (Triantaphyllou, 2000). MCDM encompasses a variety of 

techniques that are designed to systematically incorporate different perspectives and values into the 

process of selecting among alternatives when there is no clear optimal solution. Here, a posteriori 

MCDM method such as the Analytical Hierarchical Process (AHP) (Saaty, 1980) would be appropriate 

because its method of pairwise comparison yields calculations of weights after the alternatives have 

already been generated (i.e., post optimization). 

4.1.4 Using objectives vs. decisions to make choices 

For all participants, objective performance was the main focus when choosing portfolios of interest. 

Whether they tried to balance across all objectives or prioritized a subset of them, managers tended to 

structure preferences primarily around performance. From the subset of portfolios that had satisfactory 

performance, they would sometimes try to find the ones that had decisions they preferred. This 

secondary screening based on decision levers almost always centered on avoidance or pursuit of certain 

types of storage and/or moderate or aggressive use of soft path options (e.g. interruptible shares or 

conservation). One manager who was focusing on portfolios that minimized New Storage was also 

concerned that some portfolios that performed relatively well in this objective could actually be hard to 

pursue because they had small amounts of storage in multiple locations (e.g. a medium expansion of the 

South Reservoir and building a small West Slope Reservoir). Another manager noted that they were all 

“starting with performance and then looking at the levers. We want to see the results first and then 
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work backwards. That’s not how a lot of things are done in reality; normally we look at sets of levers and 

then model outcomes.” Another reflected that “if you pick totally on performance and ignore decision 

levers, you pick solutions that you wouldn't have chosen just based on decisions; conversely, if you pick 

based on decisions first, you'll probably be surprised about their poor performance.” 

Use of decision levers to make choices varied across the activities. In the first exercise with two 

objectives, four of nine participants considered decision levers, while only three of nine did so in the 

four-objective exercise and the 1°C warming exercise. This slight drop off may at least partially be due to 

the fact that complexity was added via number of tradeoffs and (in the case of the 1°C exercise) new 

hydrology. These changes may have taken up some extra cognitive bandwidth for participants, as 

suggested by one manager: “How many objectives is too many? What can we handle versus what do 

you miss if you don't include all of the objectives?” In the 4°C scenario, seven of nine participants looked 

at decision levers while making choices. One reason for this could be the fact that only hydrology 

changed between 1°C and 4°C. Besides participants’ greater comfort with the complex data 

visualizations, the increased consideration of decision levers in 4°C was related to the fact that limiting 

the number of years in restrictions required large sacrifices in New Storage and/or New Supply. In 

coming to terms with this tradeoff, managers tried to reduce reliance on storage or permanent 

agriculture dry-up, but ended up having to weigh this tradeoff against meeting reliability criteria. 

Whether or not they used decision lever characteristics to choose portfolios of interest, all participants 

expressed surprise and curiosity about the relationships between decisions and performance. 

Comments like the ones below came up frequently throughout the day: 

- Why do the decisions change so much but give me similar performance? 

- Why do very similar portfolios perform so differently? 

- Why didn’t this certain lever ever get turned on in the portfolios I was focusing on? 

- Why can’t I have this performance but with more conservation? 

- What are the differences in decisions with these two extremes in performance? 

- Why aren’t these levers ever turned on? Are they not effective? 

One participant wondered: “Is the impact that subtle changes in decisions can have on performance 

something that utilities miss in the way we currently do things?”  
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4.2 Opportunities and challenges to using MOEA-assisted optimization 

4.2.1 Opportunities 

Over the course of the exercises, as well as during the large group discussion, participants noted how 

the type of information produced by MOEA-assisted optimization could be used to enhance their 

utilities’ long term planning processes. Managers proposed two uses that support the technical 

foundations of planning:  to help staff understand complex dynamics of their supply sources and 

infrastructure interactions, and to use surprising dynamics to interrogate the accuracy of their planning 

models. One manager focused on the public participation aspect of planning, suggesting the results 

could be used to show community members how much service they would have to give up (via more 

frequent restrictions) in order to avoid unpopular and expensive infrastructure projects. Another 

manager brought up the council-level component of planning when considering how the tradeoffs could 

help make the case for changing reliability policy to decision makers or board members.  

One participant had ideas to tie the tool to two common water utility planning concepts: triple bottom 

line assessments and robust decisions. Regarding the triple bottom line, the manager wondered 

whether each lever could be scored by knowledgeable utility staff based on its economic, social, and 

environmental costs. These scores could then be used as objectives and minimized by the MOEA. 

Although this scoring would be somewhat qualitative, subjective, and may possibly under- or 

overestimate costs of specific projects that have not been thoroughly studied, connecting tradeoffs 

directly to fundamental utility planning concepts may prove useful. Utilities are also concerned with 

elucidating robust decisions, or those that support good system performance in a wide range of climatic 

futures. The manager suggested that finding specific decisions that featured prominently in portfolios 

that achieved desired performance balance in multiple planning scenarios could mean that they are 

robust.  

One participant thought it might be useful to give each portfolio an area under the curve score based on 

the objectives as a way to objectively compare portfolios. Another reflected that with the current trend 

of relying on algorithms make choices based on a priori weighting, this application of optimization was 

appealing because it still focuses on human decision making but with extra information. 

Our post-workshop survey asked participants two questions via email: 

1. How useful do you think the quantitative tradeoff information produced by the MOEA would be 

for learning about your utility's system?  
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2. How useful do you think the quantitative tradeoff information produced by the MOEA would be 

for enhancing your utility's approach to long term planning? 

The scale for responses was from 1 (not useful) to 5 (very useful). All responses for being useful for 

system learning and planning were 3 or above out of 5, with an average rating of 3.7 for useful for 

system learning, and 3.9 for planning. 

4.2.2 Challenges 

The challenges brought up by participants fell into three general categories: modeling, personnel, and 

conveying process and results. A manager from a utility that had just used MOEA-assisted optimization 

in their planning asked a simple question: “How much do you trust your model?” When the participant’s 

agency was confronted with surprising tradeoff results, in some cases the results provided verifiable, 

novel system understanding; in other cases, they were the product of model errors. This issue was 

exacerbated when existing models were run in extreme hydrologic and portfolio combinations, and 

underscored the importance of having system and project experts review portfolios. On the topic of 

modeling, other managers noted that a utility has to have the right kind of planning model- a model that 

provides a useful timestep resolution, an appropriate level of internal system detail and external 

context, and that can run reasonably quickly.  

Managers from the two utilities that had MOEA experience agreed that training staff to understand the 

tradeoff results and maintaining those skills was a struggle. Interacting with tradeoff visualizations and 

using the information to reason about a problem requires a particular cognitive approach, and the 

managers reported that for many members of their teams, seeing results from their consultants once a 

month required a review at each meeting (the managers did not specify how the tradeoffs were 

visualized during their previous planning studies). Furthermore, to continue to see benefits from using 

the tool, one or more staff members would need to maintain proficiency with the results and potentially 

be able to produce new optimization runs. The managers also said that when technical staff who had 

often spent years developing certain projects were confronted with portfolios that performed well but 

did not incorporate their projects, discussions and negotiations could become difficult. While this 

workshop was not designed to analyze the details of how these two utilities used MOEAs, conducting in-

depth interviews with their staff would likely result in valuable insights for both technical and social 

science research communities. 
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The inner workings of the MOEA, the process of employing one, and the results it produces are complex. 

In order for a utility to use one, one or more staff would have to make considerable effort to build 

understanding about the tool within the agency. Because the results are so complex, technical staff also 

must simplify the message to decision makers without sacrificing confidence in the tool or alienating 

their audience. Managers with and without MOEA experience agreed that this is a difficult task. A critical 

component of understanding, simplifying, and conveying the results is having visualizations that are as 

easy as possible to understand. A manager suggested that this is so important that it may be worth 

consulting someone with training in data visualization for input. 

4.3 Adoption of new tools 

Researchers asked participants to discuss their utilities’ experiences with the process of adopting new 

tools. The process starts when technical staff become aware of new tools. According to these managers, 

the water management industry is bombarded with great ideas and they have to sift through them and 

think about what they can apply. Sometimes the ideas come from consultants, e.g. through Integrated 

Water Resources Plan (IWRP) requests-for-proposals, and sometimes the ideas come from conferences, 

workshops, and/or co-production with researchers. They agreed that case studies of real-world 

applications are helpful for opening utilities up to new tools, and the cases are especially influential 

when they involve neighboring utilities. Managers from one of the utilities that had used an MOEA said 

it took sustained effort to convince upper management to become that case study. 

When a tool is being considered by a utility, many conditions must be met before it can be adopted. 

Managers reported that getting broad acceptance is very challenging; it can take years, and requires at 

least one champion within the agency, but preferably two because this lends credibility and force to the 

proposal. However, once technical staff have boiled down the details and shown need for, and potential 

benefit from, the tool, upper managers and boards trust them to perform the innovative analyses. 

However, in order for staff to buy in, they need to understand the background and “guts” of using the 

new tool, they need to be heavily involved in developing and integrating it, and they need to have 

access to technical assistance once they are using it.  

One manager offered a distilled version of the above: “We need proof that the tool works, trust in the 

people proposing it, and we need evidence that it is useful and usable.” In other words, the tool needs 

to be credible, legitimate, and salient (Cash et al., 2003). 
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4.4 Real-world planning and decision making context 

During small group discussions, participants answered the specific questions posed by facilitators, but 

also had discussions among themselves that provided insight into how utilities think about difficult 

planning questions. One such conversation was around level of service versus customer billing rates. If 

utilities try to avoid costly infrastructure as much as possible, rates don’t have to go up to pay for it. But, 

in the long term future when Colorado utilities will potentially be even more dependent on wet years to 

recover system storage, the only way to take advantage of that is to have adequate storage capacity. If 

avoiding infrastructure means greater frequency of restrictions, that can lead to long-term reduced 

utility revenues, prompting rates to slowly creep up anyway. Once rates increase, they will never go 

back down, so how do customers want to experience this? A manager summarized the tradeoff by 

asking “where do you want the pain to be in your system- low reliability or high rates?” 

Another group discussed the drawbacks of conservation and demand hardening (Howe and Goemans, 

2007). For smaller service areas, conservation has very little impact compared to the yield of new 

supply, and may only displace the need for new supply in the short term. Conservation is really most 

effective at saving water used on lawns in wetter years; in dry years, watering is already reduced via 

restrictions. Once conservation sets off demand hardening or years of restrictions creates a “drought 

shadow” (persistence of lower demand than pre-drought levels), restrictions don’t produce as much 

savings and deeper, more invasive restrictions become necessary. This effect was recently further 

documented in Dilling et al (2018). 

We also learned about some practical realities of how utilities make decisions. Managers noted that 

opportunism plays a big role in determining which projects go forward and when; e.g., if a cable 

company is ripping up a road, a utility will go ahead and fix leaks in the nearby pipes. Another major 

factor for whether utilities take on a project is whether it involves federal permitting; agencies strongly 

prefer not to undertake this process which commonly takes more than 10 years, millions of dollars, and 

relies on highly uncertain outcomes. Sunk costs also motivate utility decision making; any projects that 

have already seen some investment may be pursued regardless of optimization results. 

In the large group discussion at the end of the day, several managers lamented the realities of planning 

at five-year intervals. Long term planning has become such an undertaking that the preparation involved 

in creating a plan can take many months, after which the staff need time to recuperate as the planning 

process itself is so arduous. Once normal staff functioning resumes, it may be time to start thinking 



32 

 

about the next plan. Researchers should consider how existing their current expertise or future research 

can contribute tools or processes that support sustained planning. 

5 Conclusions 

In the charrette tradeoffs often, but not always, influenced managers’ construction of preferences. It 

was clear that the ability to directly compare alternatives across several dimensions helped managers 

reason out a dominance structure; sometimes they iterated until they found a satisfying alternative and 

sometimes they worked backward to justify a choice. In a few responses, though, managers simply 

applied their preferences to the set of options they were given and chose, e.g., the portfolio with the 

least New Storage. This suggests that the other objectives were not compelling enough to warrant 

compromises, and/or that additional information does not always affect core priorities. On another 

level, managers often used the opportunity to make two selections to balance their indecision and 

actually seemed to trade performance between their two choices.  

Beyond using tradeoffs to justify their own selections, managers came up with ways that tradeoff sets 

could bring justification to broader aspects of the utility planning process. They suggested that the 

tradeoffs could support policy negotiations with boards or councils as well as communications with the 

public. If the tradeoffs revealed that a minor relaxation of reliability criteria could drastically reduce 

reliance on new storage, that information could be a valuable point of discussion. Similarly, if a 

community opposed a specific project, tradeoffs could explicitly show sacrifices that would be necessary 

to avoid it. Several managers noted that the ability to choose performance priorities and then learn 

what portfolios and decisions contribute to the performance offers a new, potentially valuable way of 

approaching the planning process. This feedback from the participants clearly points to how MOEAs can 

enhance many aspects and phases of planning.  

Though there are challenges to incorporating MOEAs, e.g. appropriate and trustworthy modeling, 

maintaining tradeoff fluency, and securing technical support, many managers found their distinct 

capabilities appealing. They appreciated the ability to see relationships between objectives. We heard 

that it was refreshing to be able to combine an optimization tool with human reasoning- that the 

tradeoffs empowered managers instead of diminishing their input. 

The results from this charrette suggest to us at least two promising avenues for further technical 

research to support MOEAs for long term water utility planning. We draw the first from what we heard 

about the relationships between decision levers and objectives and how each traditionally influence 
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planning. Generally, utilities devise portfolios to see how they perform; in the workshop, a manager 

pointed out that they were choosing performance and then seeing which levers that entailed. This shift 

prompted many questions about what influence one or more levers had on performance. Future 

research that quantifies relationships between levers and performance could increase the value of 

tradeoff sets to the agencies that use MOEAs. 

The other avenue is to begin exploring the role that MOEA tradeoff sets can play in sustained planning. 

Can the system information attained through the tradeoffs and the large set of potential portfolios form 

the basis of adaptation? As supply or demand information solidifies or infrastructure projects do or do 

not come to fruition, can future actions be informed by tradeoffs and portfolios that have already been 

generated, thus reducing the burden of planning cycles?  

The MOEA research charrette was an effective approach to engaging with water managers about the 

potential for MOEAs to enhance long term water utility planning. Through the workshop we exchanged 

and created new knowledge with our participants. This success was possible through the application of 

the Participatory Framework for Assessment and Improvement of Tools (ParFAIT), which created a 

roadmap for research activities and structured the relationships with our practitioner partners. This 

transdisciplinary, participatory venture resulted in deeper understanding of water management context, 

inspired future research directions, and forged new links between academia and practice. 
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Appendix 
This appendix provides technical details about the optimization problem that produced the tradeoffs 

used in the charrette. For further discussion about the model, the problem formulation, and the tradeoff 

results that underpin this workshop, refer to Smith et al (2018).  

The Eldorado Utility Planning Model was created for this study using in the RiverWare modeling 

platform (Zagona et al., 2001). RiverWare has features such as built in water rights accounting and a 

customizable policy language that allowed us to incorporate the level of complexity that is common 

among real-world Colorado water supply systems. The model has five streamflow input sites in the 

headwaters of two major subbasins, 11 water users with spatially distributed water storage, diversions, 

and return flows, and 19 individual water rights ranging from 1888 (most senior) to 1940 (most junior). 

The hypothetical utility at the center of the optimization problem is surrounded by water users whose 

more senior rights limit the yields of Eldorado’s rights but also offer opportunities to acquire more 

water. For example, Ag3 is an agricultural user downstream of Eldorado’s South Res that has senior 

rights that can prevent the utility from filling the reservoir, and one of the decision levers allows the 

utility the utility to purchase a portion of this users water rights. Figure 2 presents the layout of the 

network and the water rights. 

The 13 decision levers, their value ranges, and brief descriptions are presented in Table 3. The names 

and order given here match the workshop screenshots in Figures 3 and 4, but are slightly different than 

how the levers were presented in Smith et al (2018). The workshop names and order were tailored for 

managers’ practical understanding. The different naming schemes are easily translatable between 

articles. 
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Table 3. List of decision levers. 

Decision Lever Description Units Range 

Ag3 Purchase 
Percentage of Ag3’s senior diversion right to 

purchase 
% 0 - 20 

Industrial 

Purchase 

Percentage of Industrial user’s mid-seniority 

diversion right to purchase 
% 0 - 20 

Wholesaler 

Shares 

Number of additional shares of Wholesaler 

water to purchase 
shares 0 - 6,000 

Ag2 Irr. Co. 

Shares 

Number of shares of Ag2 Irrigation Co. 

water to purchase 
shares 0 - 10,000 

Interruptible 

Shares 

Number of shares to include in an 

agreement with Ag2 Irrigation Co. for 

optional supply leases 

shares 0 - 10,000 

Conservation 

Level 

Level of conservation through which to 

reduce starting per capita demand; 0 = no 

change, 1 = 10% reduction, 2 = 20% 

reduction 

--- 0 - 2 

Dist. Efficiency 

Percentage of distribution efficiency to 

pursue by reducing unaccounted-for water 

(baseline efficiency is 90%) 

% 90 - 93 

South Res 

Volume 

Volume by which to expand the South 

Reservoir 

MCM 

(AF) 

0 – 2.47 

(0 – 2,000) 

West Slope Res 

Volume 

Size of a potential new West Slope 

Reservoir 

MCM 

(AF) 

0 – 12.3 

(0 - 10,000) 

Gravel Pit 

Develop gravel pits to store reusable return 

flows downstream of the city; 0 = not 

developed, 1 = developed 

--- 0 - 1 

Exchange to 

North Res 

Acquire right to exchange reusable return 

flows to NorthRes 
--- 0 - 1 

External Res 

Space 

Volume of space to rent in an external 

reservoir that can facilitate Exchange 

efficiency 

MCM 

(AF) 

0 – 3.7 

(0 - 3,000) 

Ag2 Res If & 

When 

Pay Ag2 Irrigation Co. to store water in any 

available unused space; 0 = off, 1 = on 
--- 0 - 1 

 

MOEA-assisted optimization evaluates performance based on an objective function vector, F(x), where 

x is the portfolio defined by decision lever values. Each value in the vector results from calculating a 

separate objective, ��������	�.  

Equation 1 

F(x) = (�
�����	�, �
�����	�, �
�����	�, ����������, ���������� , ����������� !�, �������� !� , ) 

∀ % ∈ Ω 
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�
�����	�, �
�����	�, and �
�����	� are restrictions-based reliability measures5. Restriction levels are 

triggered based on April 1 storage levels, which are used by Front Range, Colorado, utilities to assess 

their system status for the upcoming year. In the model, restrictions are represented by reductions in 

outdoor water use (while indoor use is never curtailed). Table 4 summarizes the restriction triggers and 

impacts. 

Table 4. Storage-based triggers and water use impacts of restriction levels. 

Current Storage-to-Long Term 

Avg Annual Demand 
Restriction Level 

Resulting Indoor 

Use 

Resulting 

Outdoor Use 

> = 75% 0 100% 100% 

< 75% 1 100% 80% 

 < 50% 2 100% 50% 

 < 25% 3 100% 0% 

 

where “Current Storage-to-Long Term Avg Annual Demand” is defined as  

Equation 2 

()*+,)- =  /0+12 31+)4 56 7+0418) 06 9:452 1,068 /)4< =64)*+45>+)? 966@12 =+525+A B)<16?  × 100 

 

The three restrictions objectives are calculated as follows: 

Minimize the number of years that Eldorado spends in Level 1 Restrictions: 

Equation 3 

�
�����	�(%) = E FG A
�����	HI�
J

�I�
K

�
 

 

Minimize the number of years that Eldorado spends in Level 2 Restrictions: 

Equation 4 

�
�����	�(%) = E FG A
�����	HI�
J

�I�
K

�
 

                                                           
5 We only showed managers five objectives total during the charrette because limited time with the visualizations 

precluded showing the full suite of objectives. Objectives minimizing Restrictions Levels 2 and 3 were omitted. 
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Minimize the number of years that Eldorado spends in Level 3 Restrictions: 

Equation 5 

�
�����	�(%) = E FG A
�����	HI�
J

�I�
K

�
 

 

where L is the number of years simulated per + traces in the hydrologic ensemble. Expectation notation, EM N, denotes that the average across the traces was used. 

The optimization seeks to minimize the fourth objective, ����������, which measures how efficiently 

Eldorado uses its supplies and system components to meet demands. It is affected by whether the utility 

can capitalize on reusable water and also whether Eldorado acquires an overabundance of Wholesaler 

or Ag2 shares. 

Equation 6 

����������(%) =  

E F1L G(=6@*)? 7ℎ14)*PQ���� ���� + =6@*)? 7ℎ14)*ST������������
J

�I�
+ ,0*+ ()@*1U2) ()+@46 V20W*�K

�
 

 

Objective five, ����������, is also minimized, and quantifies the amount of “new” water that the utility 

acquires form shares and other water users or creates through conservation. 

Equation 7 

����������(%)
=  E F1L G (A5)2? �40<: (58ℎ+*�!�, (58ℎ+*ST������ �, 7ℎ14)*PQ���� ��� , 7ℎ14)*�!�, Y06*V1>+04, B5*+E��)�

J

�I�
K

�
 

 

The sixth objective, ����������� !�, seeks to maximize the amount of water Eldorado has in carryover 

storage on April 1 of every year. 
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Equation 8 

����������� !�(%) =  E ZA[�T \/0+12 E2?041?0 9:452 1 7+0418) ]029-8 ,068 /)4< 966@12 B)<16? ^ × 100_� 

where A[�T denotes that the objective is calculated using the minimum annual value over the course of 

the simulation. 

The final objective, �������� !�, minimizes the total volume of new storage that Eldorado builds. 

Equation 9 

�������� !�(%) =  GME`:16?]02����Q
�� , a@52?]02P��������
��, (bc ∗ 0.99 gYg)N 

Note that GP is multiplied by 0.99 million cubic meters (MCM) (800 AF) because the GP lever is on/off or 

1/0, but the volume added is 0.99 MCM (800 AF). 

The RiverWare model was designed to run for 25 years at a monthly timestep. Portfolios were 

considered fully implemented at the beginning of the simulation and evaluated over the 25 years. Each 

simulation took 20 seconds to complete.  We embedded the model within the Borg MOEA (Hadka and 

Reed, 2013) and ran the optimization for approximately 5,000 function evaluations (a separate 

optimization was run for each hydrologic scenario). The performance of each portfolio was averaged 

across ten hydrologic traces which were distributed to 10 computing cores using RiverWare’s concurrent 

multiple run management functionality. Each optimization took approximately 36 hours to complete 

and used the default Borg settings except for the initial population size parameter, which was changed 

from 100 to 50 so that evolutionary search would commence more quickly (Hadka et al., 2012; Reed et 

al., 2013). 

 

 




